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Ratchet models using driving forces generated by deterministic chaotic maps
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This study investigates how ratchets perform under driving forces generated by the circle, baker, and logistic
maps with varying driving frequencies. The markedly different unidirectional net transports induced by distinct
maps and frequencies are clarified by vector field analysis of the ratchet equations. Analysis results indicate
that both the deterministic property of the driving forces and the asymmetric effect due to the ratchet potential
impact the transport. Moreover, the driving frequency determines which factor suppresses the other one and
dominates the ratchet transport.
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As widely speculated, the directed net transport with
external bias in a variety of physical and biological syste
is ascribed to the ratchet mechanism, accounting for w
diverse ratchet models have received considerable atten
in the recent decade@1#. A rather general class of these mo
els can be mathematically formulated as

mẍ1g ẋ1
d V~x,t !

d x
5 f ~ t !, ~1!

which describes the motion of a particle with massm on a
periodic asymmetric potentialV(x,t) under a damping force
with damping coefficientg and a driving forcef (t) of zero
mean, i.e., time averagêf (t)&50. This model is character
ized by its directed net transport, even when the driving fo
is of zero mean, i.e., the ensemble and time average^x(t)&
Þ0 despite ^ f (t)&50 ~for proper equation parameters!.
Studies of this model can be classified into two categor
The first category attempts to clarify how a microsystem c
extract usable work from chemical or other fluctuating p
tentials. In this category, Eq.~1! is nothing but the Langevin
equation with the Brownian particlem under a white noise
damping and driven by an additional colored noisef (t). A
prominent biological application of this category of studies
the molecular motors@2#, which are interpreted to be a plau
sible mechanism for muscular contraction, cell division, a
intracellular transport@2#. The second category investigat
how to artificially supply the external force of zero mea
e.g., f (t)5cos(vt), to do work such as segregating particl
or rectifying currents@3#. Examples of this category can b
found in diverse physical disciplines such as superconduc
@4#, Josephson junctions@5#, quantum dots@6#, geometric
ratchets@7#, and laser cooling@8#.

In the above studies,f (t) is either deterministic and pre
dictable such as simple functions, e.g., cos(vt), or stochastic
such as random noises, which might be induced by suc
sive kicks correlated by some probability instead of an ex
deterministic rule. However, as well known, a variety of sy
tems in nature are governed by another class of dynam
i.e., deterministic chaos, which can behave as stochast
noise, while adhering to a certain deterministic property. T
following question arises: How does the ratchet transp
mechanism behave if the ratchet is driven by such clas
forces? Notably, the previous studies@9# investigating how
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chaos mimicks the role of noise imply that Eq.~1! is chaotic,
even whenf (t)5cos(vt) is not a noise. That context differ
from this in the current work.

To answer the above question, we study the simple ratc
model ~1! driven by discrete kicks generated with determ
istic chaotic maps, which include the circle map, baker m
and logistic map. The interesting transport features in wh
distinct maps induce diverse directions for high frequen
kicks but induce the same direction for low frequency kic
imply that different factors govern the transport. A furth
investigation by using vector field analysis of the ratch
equation in the phase space and histogram evolution ana
in the position space reveals that the asymmetric effect
to ratchet potential and the deterministic property of the dr
ing force are two main factors affecting the transpo
Whether the asymmetric effect or the deterministic prope
dominates is determined by the frequency of the kicks in
driving forces. This phenomenon highlights the significa
role of the deterministic property of the driving forces, whic
is capable of suppressing the asymmetric effect due to
ratchet potential.

Our model setup is Eq.~1!, furnished with a temporally
discrete driving forcef (t),

mẍ1g ẋ1
d V~x!

d x
5a (

n50

`

and~ t2bn!, ~2!

where b denotes the period of the kicks,a represents the
strength of the force, andan are pure numbers with zer
mean, i.e.,̂ a&5 lim

t→`
(n50

t an50. To clarify the main fea-

tures of the problem, we fix the period of the kicks to ke
the model simple. However, the amplitudesan of the kicks
are deterministically chaotic in the time sequence. Withou
loss of generality, we setm51 and take the well-known
ratchet potential, e.g., see@9#,

V~x!5c2
4 sin@2p~x2x0!#1sin@4p~x2x0!#

16p2d
,

where d51.6, x0520.190, andc50.028/d, such that the
position x50 is a minimum of the potential~Fig. 1!. This
potential has period one, and the region between two barr
at x2520.381 andx150.619 can be chosen as a unit ce
©2002 The American Physical Society03-1
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The chaotic maps, i.e., the circle mapTC , the baker map
TB , and the logistic mapTL , are used here to drive th
ratchet system. They are defined on the unit intervaI
ª@0,1) as follows:

Maps T : I→I Invariant measureP(z)
Circle TC : z°z1c mod1 LebesquePC(z) 5 1
Baker TB : z°2z mod1 LebesquePB(z)51

Logistic TL : z°4z(12z) PL(z)5
1

pAz(12z)

The numberc5A26/10 is chosen to be irrational, so thatTC
is ergodic. The other two maps are not only ergodic, but a
mixing and exact@10#. All these maps are deterministic an
belong to different hierarchies of chaos. The last two hav
positive Lyapunov exponent and their long time behavio
unpredictable. After many iterations, the distribution of t
positions in the orbit$Tn z0 ,n50,1, . . .% approaches an in
variant probability density for almost all initial pointsz0.
This density can be determined analytically by the Perr
Frobenius operatorLTf (z)5(yPT21z@ f (y)/uT8 yu#, where
the sum extends over the preimageT21zª$yPI uTy5z%
@10#. The leading eigenvalue of this operator is one and
corresponding eigenfunction is the invariant density of
maps. For the above-mentioned maps, the densities are l
in the above tabular and plotted in Fig. 2. Since all the
densities are symmetric with respect to the axisz50.5, the
points in the orbits of the maps can be used to generate
amplitudesan of the deterministic driving force in Eq.~2! by
the following replacement:

an5Tn z020.5 for almost all z0PI .

Obviously, this force has a zero mean^a&50 with an
P@20.5,0.5).

A kick in Eq. ~2! provides an impulse ofd form that gives
a transient velocity change

ẋ~n1e!2 ẋ~n2e!5E
n1e

n1e

f ~ t ! dt5a an , e!1,

while the positionx remains the same directly after the kic
Between two arbitrary consecutive kicks, the particle mot
is governed by Eq.~2!, without the sum on the right han
side. For a large ratiog/a, the trajectoriesx(t) are trapped
around a minimum of the potential and cannot hop over
barriers into the other unit cells. For a small ratiog/a, the
particle motion is a random walk on an asymmetric potent

FIG. 1. PotentialV(x) and a unit cell betweenx2 andx1 .
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The trajectoriesx(t) wander between different unit cells. Fo
a ratio g/a between these two regions, unidirectional n
transport becomes apparent, which is of interest here.
make it concrete, we take the damping coefficientg51 and
the periodb and the strengtha of the kicks as follows:~I!
b58,a51.17 for all maps;~II ! b51,a50.9 for TC ; a
50.3 for TB ; and a50.4 for TL . Since the long time be-
haviors of the trajectories are similar for different initial co
ditions, we show only one trajectory for every map. Th
initial conditions are (x,ẋ)5(0,0) for ~I! and (x,ẋ)
5(250,0) for~II !, with z05A11/10 for both cases. Interes
ingly, the following observations can be made~Fig. 3!.

~i! For kicks with a long period, i.e.,b58, all maps in-
duce negative transport.

~ii ! For kicks with a short period, i.e.,b51, baker map
and circle map prefer positive transport and logistic map p
fers negative transport.

To clarify this peculiar behavior, we examine the pha
space of Eq.~2!. By using the definitionsv5 ẋ and U(x)
5d V(x)/d x, Eq. ~2!, without the driving term, can be re
written as

d

dt S x

v D 5S v

2g v2U~x!
D . ~3!

Above dissipative dynamics has point attractors at (x,v)
5(n,0) and hyperbolic fixed points at (x,v)5(n1x2,0) for
all integersn. The vector field of Eq.~3! is split into different
basins, separated by stable~dashed lines! and unstable~solid
lines! manifolds of the fixed points.@Fig. 4~a!#. For strong
damping systems, e.g.,g51, the vector field structure re
sembles that in Fig. 4~b!. For weak damping systems, e.g
g50.2, the structure resembles that in Fig. 4~c!. Obviously,
the phase space for weak damping is more complex than
for strong damping since different basins entangle with e
other.

FIG. 2. ~a! Circle map,~b! Baker map,~c! Logistic map, and the
invariant probability densities for~d! Circle map,~e! Baker map,
and ~f! Logistic map.
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The evolution of a state in the phase space follows
zigzag route shown in the example in Fig. 4~d!. This route
has two parts: a smooth one following the flow of the vec
field, due to damping, and another one with many interm
diate jumps inv direction, due to the kicks of the driving
force. The damping force tends to drag a state in a ba
toward its left boundary since the potential is asymme
and the attractor is closer to the left boundary of its bas

FIG. 3. Directed net transport for different maps. Three traj
tories with short periodb51 begin withx50. Three trajectories
with long period b58 begin with x5250. For short periodb
51, the first few steps of the mapsTc andTL are magnified in the
two insets, where the amplitudesaan ,n51,2, . . . , of thedriving
force are connected by two thick zigzag curves.

FIG. 4. The phase space of the dynamics in Eq.~3!: ~a! Six
basins of the three attractors at (0,0) and (61,0) are separated b
the stable~dashed lines! and unstable~solid lines! manifolds of the
two hyperbolic fixed points at (x2,0) and (x211,0).~b! The vector
field for strong dampingg51. ~c! The vector field for weak damp

ing g50.2. ~d! The evolution of an initial state„x(t),ẋ(t)… gov-
erned by Eq.~2!. The kicks provide vertical jumps and the dynam
ics between kicks follows the vector field of Eq.~3!.
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than the right one. Thereafter, a random kick has a hig
likelihood of pushing the state over the left boundary th
the right boundary, assuming that the time span between
kicks is not too short. This effect is significant when th
dampingg is strong. Of course,a must be enhanced simu
taneously to maintain the ratiog/a. The closer the attracto
is to the left boundary~i.e., the steeper is the left wall of th
unit cell! creates a strong asymmetric effect. For a we
damping system, the basins of different attractors entan
with each other. A state spirals for a long time before arrivi
at the attractor. The next kick has a higher likelihood
coming before the state has been trapped close enough t
attractor. In this case, the directed net transport can no lon
be as easily observed as a system with strong damping
conclusion, due to the asymmetric effect, the system pre
to induce a negative current independent of whether
kicks are random or deterministic. This current is appare
as long as the kick periodb is large.

For a short kick periodb, the asymmetric effect is slight
It can be realized by observing the evolution an ensemble
4969 uniformly distributed states (x,v) in the basins of the
attractor (0,0) bounded byuvu,0.5 @Fig. 5~a!#. Therein,
50.51% of these states are located on the left hand side o
centerxc5(x11x2)/2 of the unit cell. Owing to the dissi-
pative nature of the system, all states are contracted into
attractor. However, the contraction is mainly along the dir
tion of the stable manifolds for most initial states. Only tho
states with a smalluvu obtain a stronger contraction parall
to the x direction toward the attractor, as indicated in t
ensemble evolution shown in Figs. 5~a!, 5~b!, 5~c!, and 5~d!
for t50, 1, 3, and 8. The corresponding histograms of
position distribution are shown in Figs. 5~e!, 5~f!, 5~g!, and
5~h!, with 50.51%, 52.59%, 61.58%, and 89.92% of t
states on the left hand side ofxc . For a system with a shor
period, e.g., aroundb51, a state obtains successive kic
before becoming trapped into the attractor. In this case,

- FIG. 5. Evolution of an ensemble of initial states in the pha
space and the corresponding evolution of positions in the confi
ration space.~a!, ~b!, ~c!, and~d! are the distributions of states in th
phase space at timet50, 1, 3, and 8.~e!, ~f!, ~g!, and ~h! are the
corresponding position histograms.
3-3
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transport into left and right basins, induced by kicks,
nearly equal. For suchb regime, the asymmetric effect con
tributes only weakly to the directed transport. Therefore,
deterministic property of the driving force induced by diffe
ent chaotic maps becomes apparent for the transport d
tion.

Next, an attempt is made to understand why the determ
istic property of the driving force significantly affects th
transport direction for smallb by closely examining the tra
jectory x(t) in the insets of Fig. 3. The magnitudesa an of
the impulses supplied by the kicks are connected by the t
curves. According to the insets, the particle can climb o
the right boundary when the system can accumulate a l
net forceua(t1

t2anu within a short time span between somet1

andt2. An apparent example can be found in the circle m
for t1520 and t2566 in the upper inset of Fig. 3. Thi
deterministic property generated by the circle map ov
comes the asymmetric effect and leads to a positive tra
port. Conversely, this force accumulation effect for the log
.
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.
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tic map is weak,~bottom inset in Fig. 3!, accounting for why
the transport direction induced by this map remains negat

In summary, this work has attempted to understand
transport behavior of ratchet models under a different cl
of driving forces, i.e., deterministic chaos, and in doing
studies ratchet models driven by the circle map, baker m
and logistic map. The diverse transport directions induced
distinct maps imply the significance of the determinis
property of the forces. This property can overcome the as
metric effect due to the ratchet potential for a high frequen
driving force and dominates the ratchet transport. This w
provides further insight into the ratchet transport mechani
especially with respective to how deterministic chaos affe
the ratchet transport.
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