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This study investigates how ratchets perform under driving forces generated by the circle, baker, and logistic
maps with varying driving frequencies. The markedly different unidirectional net transports induced by distinct
maps and frequencies are clarified by vector field analysis of the ratchet equations. Analysis results indicate
that both the deterministic property of the driving forces and the asymmetric effect due to the ratchet potential
impact the transport. Moreover, the driving frequency determines which factor suppresses the other one and
dominates the ratchet transport.
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As widely speculated, the directed net transport withoutthaos mimicks the role of noise imply that Ed) is chaotic,
external bias in a variety of physical and biological systemsven whenf(t) = cos(t) is not a noise. That context differs
is ascribed to the ratchet mechanism, accounting for whyrom this in the current work.
diverse ratchet models have received considerable attention To answer the above question, we study the simple ratchet
in the recent decadd]. A rather general class of these mod- model (1) driven by discrete kicks generated with determin-

els can be mathematically formulated as istic chaotic maps, which include the circle map, baker map,
and logistic map. The interesting transport features in which

. V(x,t) distinct maps induce diverse directions for high frequency

mx+ yx+ dx =, (1) kicks but induce the same direction for low frequency kicks

imply that different factors govern the transport. A further
which describes the motion of a particle with masson a  investigation by using vector field analysis of the ratchet
periodic asymmetric potentid(x,t) under a damping force equation in the phase space and histogram evolution analysis
with damping coefficienty and a driving forcef (t) of zero  in the position space reveals that the asymmetric effect due
mean, i.e., time averagg(t))=0. This model is character- to ratchet potential and the deterministic property of the driv-
ized by its directed net transport, even when the driving forcéng force are two main factors affecting the transport.
is of zero mean, i.e., the ensemble and time ave(ags ) Whether the asymmetric effect or the deterministic property
#0 despite (f(t))=0 (for proper equation parametgrs dominates is determined by the frequency of the kicks in the
Studies of this model can be classified into two categoriesdriving forces. This phenomenon highlights the significant
The first category attempts to clarify how a microsystem carfole of the deterministic property of the driving forces, which
extract usable work from chemical or other fluctuating po-is capable of suppressing the asymmetric effect due to the
tentials. In this category, Eql) is nothing but the Langevin ratchet potential.
equation with the Brownian particlen under a white noise Our model setup is Eq1), furnished with a temporally
damping and driven by an additional colored noi¢g). A  discrete driving force (1),
prominent biological application of this category of studies is AV .
the molecular motorf2], which are interpreted to be a plau- - . V(x
sible mechanism for muscular contraction, cell division, and mX+yX+ =3 :azo and(t—pn), @
intracellular transporf2]. The second category investigates
how to artificially supply the external force of zero mean,where 8 denotes the period of the kicks, represents the
e.g.,f(t) =cos(t), to do work such as segregating particlesstrength of the force, and, are pure numbers with zero

or rectifying currentd3]. Examples of this category can be mean, i.e. (a}—llm _S1_a,=0. To clarify the main fea-
found in diverse physical disciplines such as superconductors

tures of the problem, we fix the period of the kicks to keep
Eg{cr‘]];??%hzzg {ggglc&gﬁngﬁqstjantum dotd6], geometric the model simple. However, the amplitudes of the kicks

In the above studiegy(t) is either deterministic and pre- are deterministically chaotic in the time sequence. Without a

dictable such as simple functions, e.g., ed¥(or stochastic loss of generfahty, we sem=1 and take the well-known
such as random noises, which might be induced by succeé"EltChet potential, e.g., s¢@],

sive kicks correlated by some probability instead of an exact . :

deterministic rule. However, as well known, a variety of sys- V(x)=c— 4 sif2m(x—Xo) |+ si47(X—Xo) |

tems in nature are governed by another class of dynamics, 167%d '

i.e., deterministic chaos, which can behave as stochastic as

noise, while adhering to a certain deterministic property. Thevhered=1.6, Xo=—0.190, andc=0.0284, such that the
following question arises: How does the ratchet transporpositionx=0 is a minimum of the potentialFig. 1). This
mechanism behave if the ratchet is driven by such class gfotential has period one, and the region between two barriers
forces? Notably, the previous studigd investigating how atx_=—0.381 andx, =0.619 can be chosen as a unit cell.
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The chaotic maps, i.e., the circle m@p, the baker map 5 5
Tg, and the logistic mapr,_, are used here to drive the 20
ratchet system. They are defined on the unit inteival 1.5 15
:=[0,1) as follows: 1 1 10u
. 0.5 0.5
Maps T 1=l Invariant measur®(z)
Circle Te :z—z+c modl Lebesqu®(z) = 1 0o 0.5 1 0o 0.5 1 00 0.5 1

Baker Tg: 22z mod1 Lebesqués(z)=1 FIG. 2. (a) Circle map,(b) Baker map(c) Logistic map, and the

Logistic T, :z—4z(1-2) 1 invariant probability densities fogd) Circle map,(e) Baker map,

PL(2)= ﬁ and (f) Logistic map.

The numbeic=/26/10 is chosen to be irrational, so thiat  The trajectoriex(t) wander between different unit cells. For
is ergodic. The other two maps are not only ergodic, but als@ ratio v/« between these two regions, unidirectional net
mixing and exacf10]. All these maps are deterministic and transport becomes apparent, which is of interest here. To
belong to different hierarchies of chaos. The last two have anake it concrete, we take the damping coefficigatl and
positive Lyapunov exponent and their long time behavior isthe period and the strengtla of the kicks as followsil)
unpredictable. After many iterations, the distribution of theg=84=1.17 for all maps;(ll) 8=1,2=0.9 for T¢; a
positions in the orbi{T"z;,n=0,1, . . .} approaches an in- =0.3 for Tg; and «=0.4 for T, . Since the long time be-
variant probability density for almost all initial point®.  haviors of the trajectories are similar for different initial con-
This density can be determined analytically by the Perronditions, we show only one trajectory for every map. Their
Frobenius operatoiCyf(2) ==y cr-1,[ f(y)/|T"y|l, where initia| conditions are %,x)=(0,0) for (1) and (%)

the sum extends over the preimage "z=={yel[Ty=2}  _(_50 0) for(Il), with zy= V11/10 for both cases. Interest-
[10]. The leading eigenvalue of this operator is one and th(?ngly, the following observations can be matig. 3.
corresponding eigenfunction is the invariant density of the (i) For kicks with a long period, i.e3=8, all maps in-
maps. For the above-mentioned maps, the densities are listeg .o negative transport. ' '

in the above tabular and plotted in Fig. 2. Since all these (i) For kicks with a short period, i.e8=1, baker map

densities are symmetric with respect to the @is0.5, the a4 circle map prefer positive transport and logistic map pre-
points in the orbits of the maps can be used to generate thg ¢ negative transport.

amplitudesa, of the deterministic driving force in Eq2) by

) To clarify this peculiar behavior, we examine the phase
the following replacement:

space of Eq(2). By using the definitions=x and U(x)
a,=T"z,—0.5 foralmostallzyel. =d V(x)/d x, Eq. (2), without the driving term, can be re-
written as
Obviously, this force has a zero meda)=0 with a,

e[—0.5,0.5). d/x|_ v 3
Akick in Eq. (2) provides an impulse of form that gives dt\v) \—yv—-UX)/" ®
a transient velocity change
Above dissipative dynamics has point attractors aw)
: N ¢ _ . =(n,0) and hyperbolic fixed points axv)=(n+x_,0) for
X(n+e)=x(n-e)= fn+e fhdt=aa,, e<l, all integersn. The vector field of Eq(3) is split into different
basins, separated by staljtiashed linesand unstablésolid
while the positiorx remains the same directly after the kick. lines) manifolds of the fixed pointg.Fig. 4a)]. For strong
Between two arbitrary consecutive kicks, the particle motiondamping systems, e.gy=1, the vector field structure re-
is governed by Eq(2), without the sum on the right hand sembles that in Fig. (#). For weak damping systems, e.g.,
side. For a large ratig/ a, the trajectoriex(t) are trapped y=0.2, the structure resembles that in Figc)4 Obviously,
around a minimum of the potential and cannot hop over thehe phase space for weak damping is more complex than that
barriers into the other unit cells. For a small ragibe, the  for strong damping since different basins entangle with each
particle motion is a random walk on an asymmetric potentialother.

n+
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FIG. 3. Directed net transport for different maps. Three trajec-
tories with short periog3=1 begin withx=0. Three trajectories
with long period =8 begin with x=—50. For short period3
=1, the first few steps of the mafgs and T are magnified in the
two insets, where the amplitudes,, ,n=1,2, . . ., of thedriving
force are connected by two thick zigzag curves.

FIG. 5. Evolution of an ensemble of initial states in the phase
space and the corresponding evolution of positions in the configu-
ration space(a), (b), (c), and(d) are the distributions of states in the
phase space at tinte=0, 1, 3, and 8(e), (), (g), and(h) are the
corresponding position histograms.

than the right one. Thereafter, a random kick has a higher
likelihood of pushing the state over the left boundary than

Zigzag route shown in the example in Figdy This route &he right boundary, assuming that the time span between two

has t s th following the fl f th ¢ kicks is not too short. This effect is significant when the
as two parts: a smooth one foflowing the flow of the vec Ordampingy is strong. Of courseg must be enhanced simul-

f"?'d’ (_jue to _damp_lng,_and another one with many 'n.tgrmeianeously to maintain the ratig/ «. The closer the attractor
diate jumps inv direction, due to the kicks of the driving

is to the left boundaryi.e., the steeper is the left wall of the

force. T_he damping force _tends to drag a state in a baS'[]nit cell) creates a strong asymmetric effect. For a weak
toward its left boyndary since the potential is as.ymmet.r'cdamping system, the basins of different attractors entangle
and the attractor is closer to the left boundary of its basin X

With each other. A state spirals for a long time before arriving
at the attractor. The next kick has a higher likelihood of

The evolution of a state in the phase space follows th

(b) Strong damping y =1

(a) Phase space structure

coming before the state has been trapped close enough to the

0.5 Ve :}gggt?}??}:ﬁ?ggg{ggg:}?gg attractor. In this case, the directed net transport can no _Ionger
S \ \ an be as easily observed as a system with strong damping. In
%o Y \q\ .0 coryclusmn, due to f[he asymmetric effect, the system prefers
2 \ /\ T to induce a negative current independent of whether the
z ‘\ hypetboli \ kicks are random or deterministic. This current is apparent,
Iy s fredpoind, | AR as long as the kick periog is large.

For a short kick periogd, the asymmetric effect is slight.
It can be realized by observing the evolution an ensemble of
4969 uniformly distributed statex ) in the basins of the
attractor (0,0) bounded byv|<0.5 [Fig. 5a)]. Therein,

- NN 50.51% of these states are located on the left hand side of the
>0 Y XL centerx.= (X, +x_)/2 of the unit cell. Owing to the dissi-
pative nature of the system, all states are contracted into the
attractor. However, the contraction is mainly along the direc-
tion of the stable manifolds for most initial states. Only those
states with a smallv| obtain a stronger contraction parallel
to the x direction toward the attractor, as indicated in the
ensemble evolution shown in Figsiah 5(b), 5(c), and 5d)
for t=0, 1, 3, and 8. The corresponding histograms of the
position distribution are shown in Figs(ep, 5(f), 5(g), and

1 0 position x 1 -1 0 x 1
5 (c) Weak dampingy= 0.2 (d) A route in the phase space

0.5

\\\\\\\\\\ wlaiii
—0.5 MR ARG
-1 0 x 1

FIG. 4. The phase space of the dynamics in ). (a) Six
basins of the three attractors at (0,0) andl(0) are separated by
the stablgldashed linesand unstablésolid lineg manifolds of the
two hyperbolic fixed points atx(_,0) and &_ +1,0).(b) The vector
field for strong dampingy=1. (c) The vector field for weak damp- 5(h), with 50.51%, 52.59%, 61.58%, and 89.92% of the
ing y=0.2. (d) The evolution of an initial statéx(t),x(t)) gov-  states on the left hand side xf. For a system with a short
erned by Eq(2). The kicks provide vertical jumps and the dynam- period, e.g., aroung@@=1, a state obtains successive kicks
ics between kicks follows the vector field of E@). before becoming trapped into the attractor. In this case, the
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transport into left and right basins, induced by kicks, istic map is weak(bottom inset in Fig. B accounting for why
nearly equal. For sucl regime, the asymmetric effect con- the transport direction induced by this map remains negative.
tributes only weakly to the directed transport. Therefore, the In summary, this work has attempted to understand the
deterministic property of the driving force induced by differ- transport behavior of ratchet models under a different class
ent chaotic maps becomes apparent for the transport direof driving forces, i.e., deterministic chaos, and in doing so,
tion. studies ratchet models driven by the circle map, baker map,
Next, an attempt is made to understand why the determinand logistic map. The diverse transport directions induced by
istic property of the driving force significantly affects the distinct maps imply the significance of the deterministic
transport direction for smaj by closely examining the tra- property of the forces. This property can overcome the asym-
jectory x(t) in the insets of Fig. 3. The magnitudesa, of = metric effect due to the ratchet potential for a high frequency
the impulses supplied by the kicks are connected by the thicKriving force and dominates the ratchet transport. This work
curves. According to the insets, the particle can climb oveprovides further insight into the ratchet transport mechanism,
the right boundary when the system can accumulate a largespecially with respective to how deterministic chaos affects

net force|a’= ?a,| within a short time span between some the ratchet transport.

and 7,. An apparent example can be found in the circle map The author would like to thank the National Science
for 7;=20 and 7,=66 in the upper inset of Fig. 3. This Council of the Republic of China, Taiwan, for financially
deterministic property generated by the circle map oversupporting this research under Contract No. NSC 90-2112-
comes the asymmetric effect and leads to a positive trangv-007-067. T.Y. Tsong, W. Wang, and J. Wang are appreci-
port. Conversely, this force accumulation effect for the logis-ated for their encouragement and valuable discussions.
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